
AMI
Scientific Metadata Ecosystem

Fabian Lambert, Jérôme Fulachier, Jérôme Odier, Maxime Jaume, Pierre-Antoine Delsart

05/05/22 AMI Demo 2

What is AMI?
● AMI (ATLAS Metadata Interface) is a generic ecosystem for metadata:

– Heterogenous datasource connectivity

– Primitives for metadata extraction and processing

– High level tools for selecting data by metadata criteria

● The ecosystem has development kits for:

– Developing JAVA business objects (server-side)

– Developing metadata-oriented Web applications (client-side)

● AMI is designed for:

– Scalability, evolutivity and maintainability

05/05/22 AMI Demo 3

Applications / monitoring

Overview of the AMI ecosystem

AMI JAVA Core
(core library server-side)

SQL
NoSQL

Other

AMI Task Servers
(metadata aggregation

and processing)

AMI
HTTP

Services
(servlets)

AMI Web Framework
(JS, x-domain AJAX)

Lightweight HTTP clients
(Python, JS, Java, C++)

Lightweight MQTT clients
(JS, JAVA)

in
te

rn
et

MQTT
broker

AMI Server Backend

AMI Pipeline
(NodeRED-based)

05/05/22 AMI Demo 4

AMI JAVA Core

05/05/22 AMI Demo 5

AMI JAVA Core features

● AMI JAVA Core is the central part of the AMI ecosystem

● Main features:

– Authentication (SSO, OAuth2) and authorizations

– Command engine (~100 generic commands)

● Metadata queries (trivial [SQL, MQL] or more complex, read or write),
experiment-specific commands, service administration, ...

– High level primitives for manipulating data

● DB rowsets, JSON documents, XML documents, remote access, ...

– Metadata Query Language (MQL) and Structured Query Language (SQL)

authentication and roles

high level primitives for manipulating data

distributed transactional engine

connection pool

JDBC drivers

reflexion and MQL

command engine data formatter

n-tiers architecture

Command layer

Metadata layer

05/05/22 AMI Demo 6

Command layer

Authorization sub-system
Command sub-system

(JAVA classes)

Authentication sub-system
(password / X.509 certificate / SSO with OAuth2)

Metadata layerAMI
conf

SQL
NoSQL

Other
(files, brokers, ...)

Formatter
(XSLT)

clients (HTTP services)

Example of commands:
 GetSessionInfo
 SearchQuery -catalog=”...” -sql=”...”
 GetDatasetInfo -logicalDatasetName=”...” (for ATLAS, getting detailed dataset info)

granularity:

catalog, row
 or field

05/05/22 AMI Demo 7

Metadata layer

MySQL Oracle NoSQL

Connection pool (HikariCP)
free used

……

Transaction pool
Transaction #1 Transaction #2

…

05/05/22 AMI Demo 8

Metadata layer

MySQL Oracle NoSQL

Connection pool (HikariCP)

Relation extraction for SQL only
(foreign keys, indices, ...)

free used

……

Reflexion sub-system

MQL → SQL
automatic generation of SQL Joins

Transaction pool

MetadataQueryLanguage

Transaction #1 Transaction #2

…

05/05/22 AMI Demo 9

Metadata layer

Command #1
(transaction #1)

MySQL Oracle NoSQL

Connection pool (HikariCP)

Command sub-system

Relation extraction for SQL only
(foreign keys, indices, ...)

free used

……

Reflexion sub-system

MQL → SQL
automatic generation of SQL Joins

Very high level rowset

Transaction pool

MetadataQueryLanguage

Data primitives

Transaction #1 Transaction #2

…

Command #2
(transaction #2)

Command #3
(transaction #2)

…

05/05/22 AMI Demo 10

Metadata Query Language (MQL)
● MQL is a kind of SQL without FROM clause nor join

● It makes it possible to build queries without (precisely) knowing
relations

● Joins are automatically generated from the reflexion sub-system info

● MQL turns DB-oriented point of view to metadata-oriented point of view

● When there are cycles in relations, there is a dedicated syntax to apply
path constraints

MQL to SQL

05/05/22 AMI Demo 11

AMI Web Framework

05/05/22 AMI Demo 12

AMI Web Framework (AWF)
● A Web framework for designing metadata-oriented applications

● AWF can be used without the AMI Server Backend

– Server-side, libraries AMIMini{PHP,Python,JAVA} can easily
bridge AWF to existing services

● AWF is based on standard technologies:

– JS2020 (JS5 bundles with using Webpack and Babel), CSS3, HTML5

– JQuery, Twitter Bootstrap 4 and 5, AMI-Twig (MVC pattern, JS Twig template
engine implementation), Vue.js 3 (MVVM pattern)

● Nginx-based image on Docker Hub

05/05/22 AMI Demo 13

Features and patterns
● Authentication & roles

● URL router, short URLs

● Sub-applications and reusable graphic controls (object paradigm)

● Centralized resource live cycle management (CSS, JS, JSON, xml,
Twig files; AMI sub-applications; AMI controls)

● Wizards for generating sub-application and control skeletons

● Patterns:

– MVC

● Model → AMI commands
● View → TWIG templates
● Controller → classes ami.SubApp, ami.Control (JavaScript)

– MVVM

● based on Vue.js 3 (work in progress!)

05/05/22 AMI Demo 14

Default controls and applications
● Controls can be embedded in external Web pages such as wikis

● Applications are generally built by assembling controls

● Main available controls:

– Dialog boxes

– Controls for searching (Google-like Search, Criteria Search, …)

– Controls for displaying (Schema Viewer, Tab, Table, Element Info, …)

– Controls for annotating entities (WhiteBoard, …)

● Main available applications:

– Embedded CMS

– AMI command interpreter

– Admin Dashboard and Monitoring

– Schema Viewer, Table Viewer, Simple Search, Criteria Search, Search Modeler, …

05/05/22 AMI Demo 15

Screenshots

A control embedded
in a wiki and connected to

the central AMI service

Searching ATLAS
datasets by criteria

This control executes the
GetDatasetInfo command

Displaying search
results in AMI

The AMI-Tags
application

05/05/22 AMI Demo 16

Screenshots

05/05/22 AMI Demo 17

Screenshots

05/05/22 AMI Demo 18

Screenshots

05/05/22 AMI Demo 19

Screenshots

05/05/22 AMI Demo 20

Screenshots

05/05/22 AMI Demo 21

Screenshots

05/05/22 AMI Demo 22

AMI Task Server and AMI Pipeline

05/05/22 AMI Demo 23

AMI Task Server features
● The AMI Task Server is used for:

– Extracting metadata from primary sources (pull mode)

– (Re)Processing and storing metadata in AMI

● It can run any kind of tasks (shell, python, java, ...)

● Can benefit from the AMI Java Core library

● Main features:

– Kind of super CRON

– The AMI Task Server is distributed

– Control and monitoring (via MQTT)

– Mutual exclusion mechanism between tasks

– Priority lottery scheduler for avoiding starvation (not real time)

– Pipelined tasks with execution report

– Image in Docker Hub

AMI

05/05/22 AMI Demo 24

AMI Pipeline features
● AMI provides a Node-RED-based low-code programming system for

task pipeline definitions

● Image available on Docker Hub

● Demo: http://localhost:1880

http://localhost:1880/

05/05/22 AMI Demo 25

Conclusion

05/05/22 AMI Demo 26

Conclusion
● AMI is mature metadata ecosystem of more than 20 years of existence

● AMI Java Core

– High level server-side JAVA library for processing metadata

i) High level primitives for manipulating metadata,

ii) Metadata Query Language (MQL),

iii) datasource connectivity.

● AMI Services + lightweight clients

– AMI HTTP command service (proprietary), REST API, MQTT server control and monitoring

● AMI Web Framework

– For developing metadata-oriented Web applications and graphic controls

● AMI Task Server

– Distributed system for extracting, processing and storing metadata

● AMI Pipeline

– Low-code programming for task pipeline definitions

● https://hub.docker.com/repository/docker/amiteam/

https://hub.docker.com/repository/docker/amiteam/

05/05/22 AMI Demo 27

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

