Numérique, Intelligence Artificielle & Environnement

Mathilde JAY

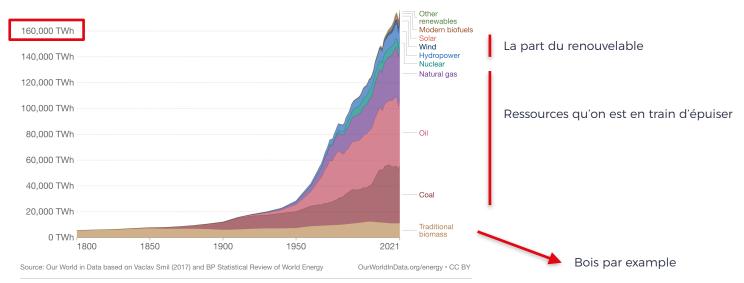
Rdatadev - 17 octobre 2023

Définition de l'énergie

D'après Wikipedia:

"L'énergie est un concept relié à ceux d'**action**, de **force** et de **durée** : la mise en œuvre d'une action nécessite de maintenir une certaine force pendant une durée suffisante, pour vaincre les inerties et résistances qui s'opposent à ce changement.

En science physique, l'énergie, mesurée en **joules** dans le système international, est une mesure de la capacité d'un système à **modifier un état**, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur."


Énergie (Joules) = Puissance (Watt) x Durée (Secondes)

Autre unité très utilisée : kWh

Sources d'énergie

Global primary energy consumption by source

Primary energy is calculated based on the 'substitution method' which takes account of the inefficiencies in fossil fuel production by converting non-fossil energy into the energy inputs required if they had the same conversion losses as fossil fuels.

Our World in Data

Exemples pour appréhender des ordres de grandeurs

	Puissance	Durée pour atteindre 1 kWh
Sèche-cheveux	2 kW	30 minutes
Ampoules LED	4 W	10,4 jours
Voiture Renault ZOE	100 kW	36 secondes
4 moteurs d'avion	34 MW	0,1 secondes
Macbook Air	Batterie de 50 Wh	20 décharges
Pile AA alcaline	Batterie de 3,75 Wh	267 piles

Exemples pour appréhender des ordres de grandeurs

Numérique : définitions

TDP: Thermal Design Power

« Quantité maximale de chaleur générée par une puce ou un **composant informatique** que le système de refroidissement d'un ordinateur est conçu pour dissiper sous n'importe quelle charge de travail. »

Bonne approximation de la puissance du composant à utilisation maximale.

PUE: Power Usage Effectiveness

Énergie totale consommée

PUE = Énergie consommée par
l'infrastructure informatique

Évalue l'efficacité énergétique des **centres de données**, en particulier du système de refroidissement.

Autre indicateurs : WUE (pour l'eau)

Exemples dans le numérique : TDP

	TDP
CPU	100 W
GPU H100 PCIe	350 W
GPU H100 SXM	700 W
TPU v4	200 W

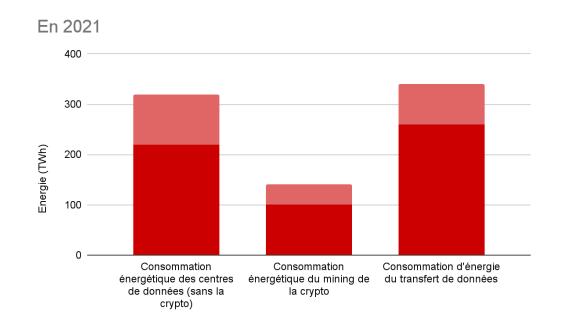
Et pour un serveur complet?

- Serveur cloud : quelques centaines de watt
- Serveur IA avec 8 GPUs : Quelques millers de watt

Exemples dans le numérique: PUE

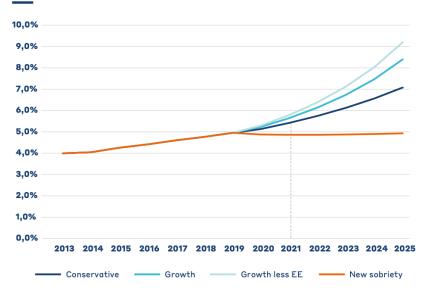
Moyenne mondiale: 1,55

(D'après https://uptimeinstitute.com/about-ui/ press-releases/2022-global-data-centersurveyreveals-strong-industry-growth) Moyenne chez les GAFAM: 1,1


(D'après eux)

	PUE
Google	1,06-1,10
Meta	1,09
Amazon	1.07–1.15
Microsoft	1,18

Énergie consommée par les centres de données


Par rapport au total de 160 000 TWh

Centre de données + crypto + transfert des données = **0,4** % de l'énergie produite mondialement

Énergie consommée par le numérique

Part du numérique dans la consommation d'énergie primaire mondiale

Estimation faite par le Shift Project (2021)

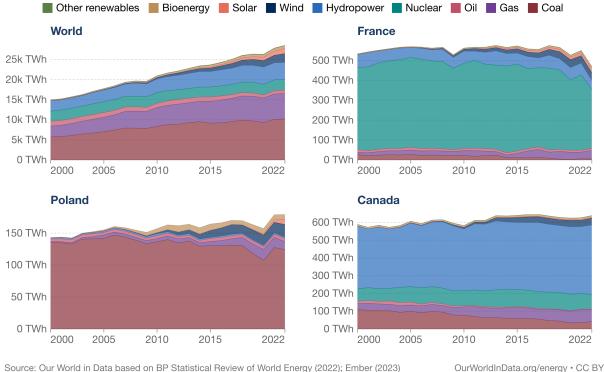
Prend en compte tous les équipements numériques

- Terminaux utilisateurs
 - Smartphones
 - Ordinateurs fixes ou portables

Par rapport au graphe précédant : **10 fois plus important** dans la part dans la consommation d'énergie primaire mondiale

https://theshiftproject.org/wp-content/uploads/2021/03/Note-danalyse_Numerique-et-5G_30-mars-2021.pdf

Ouverture sur l'impact environnemental

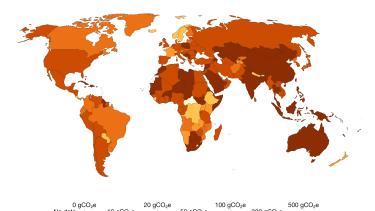

Source d'énergie du numérique: l'électricité

Chaque source est cause d'émissions de CO2.

Mais avec une intensité carbone (quantité de CO2 par kWh) qui peut être très différente.

Electricity production by source

Note: 'Other renewables' includes waste, geothermal, wave and tidal.


OurWorldInData.org/energy • CC BY

Évaluer les émissions CO2 équivalent

Carbon intensity of electricity, 2022

Carbon intensity is measured in grams of carbon dioxide-equivalents¹ emitted per kilowatt-hour of electricity.

Source: Ember Climate (from various sources including the European Environment Agency and EIA)

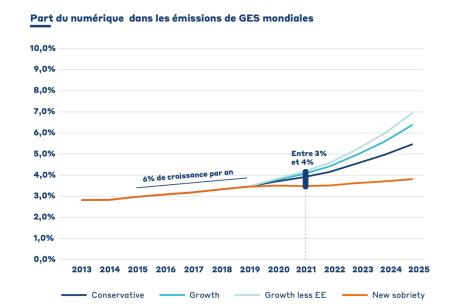
OurWorldInData.org/energy • CC BY

Émissions CO2 équivalent (CO2equ)

Énergie consommée (kWh) x Intensité carbone

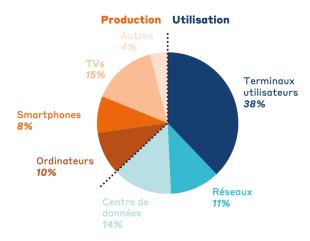
^{1.} Carbon dioxide-equivalents (CO_xeq.) Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse gas emissions, researchers express them in "carbon dioxide-equivalents" (CO_xeq.) This takes all greenhouse gases in carbon dioxide-equivalents (CO_xeq.), each one is weighted by its global warming potential (GWP) value. GWP measures the amount of warming a gas creates compared to CO_x. CO_x is given a GWP value of one. If a gas had a GWP of 10 then one kingrang of that gas would generate to the times the warming effect as one kilogram of CO_x. Carbon dioxide-equivalents are calculated for each gas by multiplying the mass of emissions of a specific greenhouse gas by its GWP actor. This warming can be stated over different timescales. To calculate CO_x or 100-year timescale (GWP100). Total greenhouse gas emissions — measured in CO_xeq — are then calculated by summing each gas 'CO_xeq value.

Impact du numérique

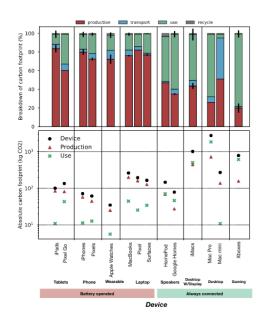

D'après l'agence internationale de l'énergie (AIE), pour les centres de données :

En 2020

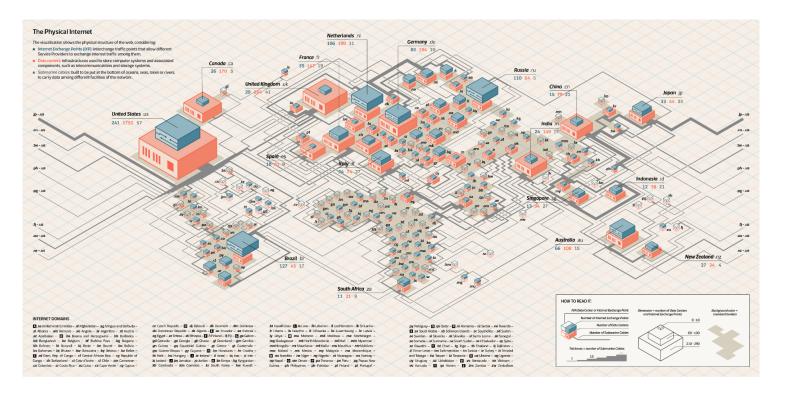
- 300 Millions de tCO2eq en 2020
 - Effets directs et indirects
- 0,6% des émissions CO2 globales


D'après le Shift Project

- Figure de droite
- Prennent en compte tous les équipements et tout le cycle de vie

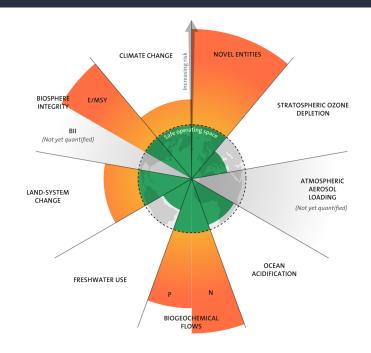


Analyse par cycle de vie


Distribution de l'empreinte carbone du numérique mondial par poste en 2019

D'après le shift project

U. Gupta et al., "Chasing Carbon: The Elusive Environmental Footprint of Computing," arXiv:2011.02839 [cs], Oct. 2020, Accessed: Oct. 15, 2021. [Online]. Available: http://arxiv.org/abs/2011.02839



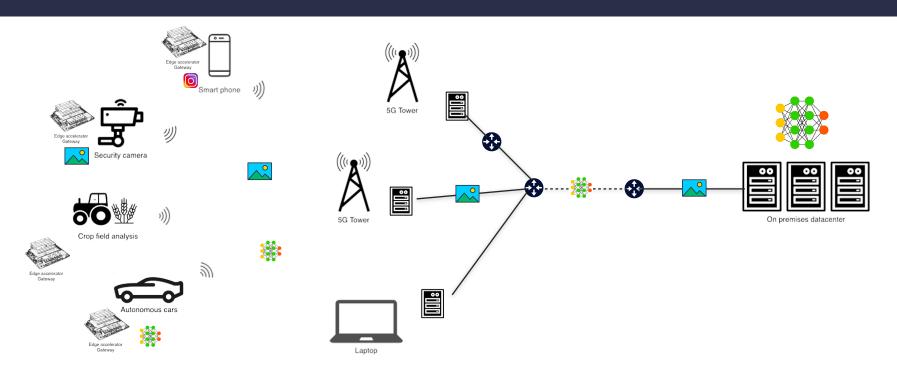
Situer le numérique (Gauthier Roussilhe) Livre sur l'impact environnemental du numérique

Tout n'est pas mesurable - ou ne doit pas être mesuré

- Pour le numérique :
 - Raréfaction des métaux rares
 - Consommation d'eau
 - Impact sur les sols / déchets

 Pas de besoin de savoir combien on consomme pour faire preuve de sobriété!

https://www.stockholmresilience.org/research/research-news/2022-01-18-safe-planetary-boundary-for-pollutants-including-plastics-exceeded-say-researchers.html


Intelligence artificielle

Au niveau mondial

D'après l'agence internationale de l'énergie :

- Alphabet (Google)
 - o 10-15% de sa consommation d'énergie était liée aux workload d'IA entre 2019 et 2021
 - o Croissance de **20-25%** par an
 - En 2021, consommation total: 12k GWh (d'après Statistica)
- Meta et Google
 - o **60-70%** pour l'inférence
 - o **20-40%** pour l'entraînement
- Al générative vont accéléré la croissance

Infrastructures pour l'IA

Merci pour votre attention!

Questions?